翻訳と辞書
Words near each other
・ Groom of the Stool
・ Groom Porter
・ Groom Range
・ Groom's cake
・ Groom, Texas
・ Groombridge
・ Groombridge (disambiguation)
・ Groombridge (Essex cricketer)
・ Groombridge 1618
・ Groombridge 1830
・ Groombridge 34
・ Groombridge Place
・ Groombridge railway station
・ Gromov's theorem on groups of polynomial growth
・ Gromovo
Gromov–Hausdorff convergence
・ Gromov–Witten invariant
・ Gromphadorhina
・ Gromphadorhina oblongonota
・ Gromphadorhinini
・ Gromphas
・ Gromshin
・ Gromshin Heights
・ Gromth
・ Gromwell
・ Gromyko (surname)
・ Gron
・ Gron, Cher
・ Gron, Yonne
・ Gronach


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gromov–Hausdorff convergence : ウィキペディア英語版
Gromov–Hausdorff convergence
In mathematics, Gromov–Hausdorff convergence, named after Mikhail Gromov and Felix Hausdorff, is a notion for convergence of metric spaces which is a generalization of Hausdorff convergence.
==Gromov–Hausdorff distance==

Gromov–Hausdorff distance measures how far two compact metric spaces are from being isometric.
If ''X'' and ''Y'' are two compact metric spaces, then ''dGH'' (''X,Y'' )
is defined to be the infimum of all numbers ''dH''(''f'' (''X'' ), ''g'' (''Y'' )) for all metric spaces ''M'' and all isometric embeddings
''f'' :''X''→''M'' and ''g'' :''Y''→''M''. Here ''d''''H'' denotes Hausdorff distance between subsets in ''M'' and the ''isometric embedding'' is understood in the global sense, i.e. it must preserve all distances, not only infinitesimally small ones; for example no compact Riemannian manifold admits such an embedding into Euclidean space.
The Gromov–Hausdorff distance turns the set of all isometry classes of compact metric spaces into a metric space, called Gromov–Hausdorff space, and it therefore defines a notion of convergence for sequences of compact metric spaces, called Gromov–Hausdorff convergence. A metric space to which such a sequence converges is called the Hausdorff limit of the sequence.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gromov–Hausdorff convergence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.